skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yuan, Allen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We construct a lift of the $$p$$-complete sphere to the universal height $$1$$ higher semiadditive stable $$\infty $$-category of Carmeli–Schlank–Yanovski, providing a counterexample, at height $$1$$, to their conjecture that the natural functor $$ _n \to \operatorname{\textrm{Sp}}_{T(n)}$$ is an equivalence. We then record some consequences of the construction, including an observation of Schlank that this gives a conceptual proof of a classical theorem of Lee on the stable cohomotopy of Eilenberg–MacLane spaces. 
    more » « less
  2. We develop a higher semiadditive version of Grothendieck-Witt theory. We then apply the theory in the case of a finite field to study the higher semiadditive structure of the K ( 1 ) K(1) -local sphere S K ( 1 ) \mathbb {S}_{K(1)} at the prime 2 2 , in particular realizing the non- 2 2 -adic rational element 1 + ε<#comment/> ∈<#comment/> π<#comment/> 0 S K ( 1 ) 1+\varepsilon \in \pi _0\mathbb {S}_{K(1)} as a “semiadditive cardinality.” As a further application, we compute and clarify certain power operations in π<#comment/> 0 S K ( 1 ) \pi _0\mathbb {S}_{K(1)}
    more » « less
  3. We give a fully faithful integral model for simply connected finite complexes in terms of E ∞<#comment/> \mathbb {E}_{\infty } -ring spectra and the Nikolaus–Scholze Frobenius. The key technical input is the development of a homotopy coherent Frobenius action on a certain subcategory of p p -complete E ∞<#comment/> \mathbb {E}_{\infty } -rings for each prime p p . Using this, we show that the data of a simply connected finite complex X X is the data of its Spanier-Whitehead dual, as an E ∞<#comment/> \mathbb {E}_{\infty } -ring, together with a trivialization of the Frobenius action after completion at each prime. In producing the above Frobenius action, we explore two ideas which may be of independent interest. The first is a more general action of Frobenius in equivariant homotopy theory; we show that a version of Quillen’s Q Q -construction acts on the ∞<#comment/> \infty -category of E ∞<#comment/> \mathbb {E}_{\infty } -rings with “genuine equivariant multiplication,” which we call global algebras. The second is a “pre-group-completed” variant of algebraic K K -theory which we callpartial K K -theory. We develop the notion of partial K K -theory and give a computation of the partial K K -theory of F p \mathbb {F}_p up to p p -completion. 
    more » « less
  4. Abstract The map is a weak equivalence. 
    more » « less